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29. [M47] Exercise 28 shows that the polyphase distribution is optimal among all
merge-until-empty patterns in the minimum-phase sense. But is it optimal also in the
minimum-pass sense?

Let a be relatively prime to b, and assume that a + b is the Fibonacci number F;,.
Prove or disprove the following conjecture due to R. M. Karp: The number of initial
runs processed during the merge-until-empty pattern starting with distribution (a,b)
is greater than or equal to ((n—5)F,4+1 + (2n+2)F,)/5. (The latter figure is achieved
when a = Fy,—1, b= F,_».)



The determination of strictly optimum T'-tape merge patterns — that is, of
Tlifo trees whose path length is minimum for a given number of external nodes —
seems to be quite difficult. For example, the following nonobvious pattern turns
out to be an optimum way to merge seven initial runs on four tapes, reading
backwards:

A one-way merge is actually necessary to achieve the optimum! (See exercise 8.)
On the other hand, it is not so difficult to give constructions that are asymptot-
ically optimal, for any fixed 7.

Let K7(n) be the minimum external path length achievable in a T-lifo tree
with n external nodes. From the theory developed in Section 2.3.4.5, it is not
difficult to prove that

Kr(n) >2ng— [(T-1)"=n)/(T-2)|,  q=[logr_yn], (9)

since this is the minimum external path length of any tree with n external nodes
and all nodes of degree < T. At the present time comparatively few values of
Krp(n) are known exactly. Here are some upper bounds that are probably exact:

n=123 4 5 6 7 8 9 10 11 12 13 14 15
Ksn)<0 2 5 9 12 16 21 25 30 34 39 45 50 56 61 (10)
K,n)<0 2 3 6 8 11 14 17 20 24 27 31 33 37 40

Karp discovered that any tree whose internal nodes have degrees < T is
almost T-lifo, in the sense that it can be made T-lifo by changing some of the
external nodes to one-way merges. In fact, the construction of a suitable labeling
is fairly simple. Let A be a particular tape name, and proceed as follows:
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The Transitive Closure of a
Random Digraph

Richard M. Karp*
University of California at Berkeley, Berkeley, CA 94720 and
International Computer Science Institute, Berkeley, CA 94720

ABSTRACT

In a random n-vertex digraph, each arc is present with probability p, independently of the
presence or absence of other arcs. We investigate the structure of the strong components of
a random digraph and present an algorithm for the construction of the transitive closure of
a random digraph. We show that, when n is large and np is equal to a constant c greater
than 1, it is very likely that all but one of the strong components are very small, and that
the unique large strong component contains about ®’n vertices, where @ is the unique root
in [0, 1] of the equation 1 —x — e “* = 0. Nearly all the vertices outside the large strong
component line in strong components of size 1. Provided that the expected degree of a
vertex is bounded away from 1, our transitive closure algorithm runs in expected time
O(n). For all choices of n and p, the expected execution time of the algorithm is O(w(n)
(nlog n)*"*), where w(n) is an arbitrary nondecreasing unbounded function. To circumvent
the fact that the size of the transitive closure may be Q(n”) the algorithm presents the
transitive closure in the compact form (A X B)U C, where A and B are sets of vertices,
and C is a set of arcs.

1. INTRODUCTION

The probability space of digraphs D, , is defined as follows: each point in the
space is a digraph with vertex set {1,2, ..., n} having no loops or multiple arcs,
and the probability of a given digraph D with e arcs is p°(1 — p)""~"°. In other
words, each arc is present with probability p, independently of the presence or
absence of other arcs. We shall study the structure of the strongly connected
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Computer Science Institute, Berkeley, California.

Random Structures and Algorithms, Vol. 1, No. 1 (1990)
© 1990 John Wiley & Sons, Inc. CCC 1042-9832/90/010073-21$04.00



BIRTH OF THE GIANT COMPONENT 353

unanswered seems to be almost endless. But we shall close this list of research
problems by stating what seems to be the single most important related area ripe
for investigation at the present time. Wright [42] gave a procedure for computing
the number of strongly connected labeled digraphs of excess r, analogous to his
formulas for connected labeled undirected graphs. Random directed multigraphs
are of great importance in computer applications, and it is shocking that so little
attention has been given to their study so far. [Karp [21] carried Wright's
investigations further and discovered a beautiful theorem: A random digraph with
n(1+ w) directed arcs almost surely has a giant strong component of size
~@(w)’n, when O(p) is the factor such that an undirected graph with In(l1+ )
edges almost surely has a giant component of size ~@()n. (The function O(u)
is (u + o) /(1 + ), according to (23.11). Karp’s investigation was basedon D, ,,
in which every directed arc is present with probability p, but a similar result surely
holds for other models of random digraphs.) A complete analysis of the random
directed multigraph process is clearly called for, preferably based on generating
functions so that extensive quantitative information can be derived without
difficulty.

Here is a sketch of how such an investigation might begin. The directed
multigraph process consists of adding directed arcs x— y repeatedly to an initially
empty multiset of arcs on the vertices {1,2,...,n}, where x and y are in-
dependently and uniformly distributed between 1 and n. The compensation factor
k(M) of a multidigraph M with m,, arcs from x to y is 1/II;_, I, _, m,,!; we can
use it to compute bivariate generating functions as in (2.1). The bgf for all
possible multidigraphs is Z,_, e" "z"/n! = G(2w, z).

Let &/ be the family of all multidigraphs such that all vertices are reachable
from vertex 1 via a directed path, and let A(w, z) be the corresponding bgf. There
is a nice relation between A(w, z) and the bgf C(w, z) for connected undirected
multigraphs, (2.10): If A(w, z)=ZX,_, a,(w)z"/n!, we have

> a,,(w)e_"z’”2 % =C(w, z). (29.11)

n=1

w =

This can be proved by replacing z by ze 2 and noting that C(w, ze "'*) is the
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No reason why S,(z) should have the simple form (29.17) is apparent; this
phenomenon |cries out for explanation, if it is indeed true for all » >0, and the
explanation will probably lead to new theorems of interest. It can be shown that
this conjecture is equivalent to the assertion that the sum of (—1)«/»!, over all
labelled, reduced, strongly connected multidigraphs of excess r, is zero; or in
other words, if we choose a labelled, reduced, strongly connected multidigraph of
excess r at random, with probabilities weighted in the natural way by the
compensation factor k, then the probability is 3 that there will be an even number
of vertices.

Is there a simple recurrence governing the leading coefficients s, 5,9, S39, - - -
perhaps analogous to the relation we observed for ordinary connected com-
ponents in (8.5)?



